Serveur d'exploration sur la glutarédoxine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Redox regulation by reversible protein S-thiolation in Gram-positive bacteria.

Identifieur interne : 000127 ( Main/Exploration ); précédent : 000126; suivant : 000128

Redox regulation by reversible protein S-thiolation in Gram-positive bacteria.

Auteurs : Marcel Imber [Allemagne] ; Agnieszka J. Pietrzyk-Brzezinska [Pologne] ; Haike Antelmann [Allemagne]

Source :

RBID : pubmed:30308476

Descripteurs français

English descriptors

Abstract

Low molecular weight (LMW) thiols play an important role as thiol-cofactors for many enzymes and are crucial to maintain the reduced state of the cytoplasm. Most Gram-negative bacteria utilize glutathione (GSH) as major LMW thiol. However, in Gram-positive Actinomycetes and Firmicutes alternative LMW thiols, such as mycothiol (MSH) and bacillithiol (BSH) play related roles as GSH surrogates, respectively. Under conditions of hypochlorite stress, MSH and BSH are known to form mixed disulfides with protein thiols, termed as S-mycothiolation or S-bacillithiolation that function in thiol-protection and redox regulation. Protein S-thiolations are widespread redox-modifications discovered in different Gram-positive bacteria, such as Bacillus and Staphylococcus species, Mycobacterium smegmatis, Corynebacterium glutamicum and Corynebacterium diphtheriae. S-thiolated proteins are mainly involved in cellular metabolism, protein translation, redox regulation and antioxidant functions with some conserved targets across bacteria. The reduction of protein S-mycothiolations and S-bacillithiolations requires glutaredoxin-related mycoredoxin and bacilliredoxin pathways to regenerate protein functions. In this review, we present an overview of the functions of mycothiol and bacillithiol and their physiological roles in protein S-bacillithiolations and S-mycothiolations in Gram-positive bacteria. Significant progress has been made to characterize the role of protein S-thiolation in redox-regulation and thiol protection of main metabolic and antioxidant enzymes. However, the physiological roles of the pathways for regeneration are only beginning to emerge as well as their interactions with other cellular redox systems. Future studies should be also directed to explore the roles of protein S-thiolations and their redox pathways in pathogenic bacteria under infection conditions to discover new drug targets and treatment options against multiple antibiotic resistant bacteria.

DOI: 10.1016/j.redox.2018.08.017
PubMed: 30308476
PubMed Central: PMC6178380


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Redox regulation by reversible protein S-thiolation in Gram-positive bacteria.</title>
<author>
<name sortKey="Imber, Marcel" sort="Imber, Marcel" uniqKey="Imber M" first="Marcel" last="Imber">Marcel Imber</name>
<affiliation wicri:level="3">
<nlm:affiliation>Freie Universität Berlin, Institute for Biology-Microbiology, Königin-Luise-Strasse 12-16, D-14195 Berlin, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Freie Universität Berlin, Institute for Biology-Microbiology, Königin-Luise-Strasse 12-16, D-14195 Berlin</wicri:regionArea>
<placeName>
<region type="land" nuts="3">Berlin</region>
<settlement type="city">Berlin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Pietrzyk Brzezinska, Agnieszka J" sort="Pietrzyk Brzezinska, Agnieszka J" uniqKey="Pietrzyk Brzezinska A" first="Agnieszka J" last="Pietrzyk-Brzezinska">Agnieszka J. Pietrzyk-Brzezinska</name>
<affiliation wicri:level="1">
<nlm:affiliation>Freie Universität Berlin, Laboratory of Structural Biochemistry, D-14195 Berlin, Germany; Institute of Technical Biochemistry, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Lodz 90-924, Poland.</nlm:affiliation>
<country xml:lang="fr">Pologne</country>
<wicri:regionArea>Freie Universität Berlin, Laboratory of Structural Biochemistry, D-14195 Berlin, Germany; Institute of Technical Biochemistry, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Lodz 90-924</wicri:regionArea>
<wicri:noRegion>Lodz 90-924</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Antelmann, Haike" sort="Antelmann, Haike" uniqKey="Antelmann H" first="Haike" last="Antelmann">Haike Antelmann</name>
<affiliation wicri:level="3">
<nlm:affiliation>Freie Universität Berlin, Institute for Biology-Microbiology, Königin-Luise-Strasse 12-16, D-14195 Berlin, Germany. Electronic address: haike.antelmann@fu-berlin.de.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Freie Universität Berlin, Institute for Biology-Microbiology, Königin-Luise-Strasse 12-16, D-14195 Berlin</wicri:regionArea>
<placeName>
<region type="land" nuts="3">Berlin</region>
<settlement type="city">Berlin</settlement>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2019">2019</date>
<idno type="RBID">pubmed:30308476</idno>
<idno type="pmid">30308476</idno>
<idno type="doi">10.1016/j.redox.2018.08.017</idno>
<idno type="pmc">PMC6178380</idno>
<idno type="wicri:Area/Main/Corpus">000202</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000202</idno>
<idno type="wicri:Area/Main/Curation">000202</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000202</idno>
<idno type="wicri:Area/Main/Exploration">000202</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Redox regulation by reversible protein S-thiolation in Gram-positive bacteria.</title>
<author>
<name sortKey="Imber, Marcel" sort="Imber, Marcel" uniqKey="Imber M" first="Marcel" last="Imber">Marcel Imber</name>
<affiliation wicri:level="3">
<nlm:affiliation>Freie Universität Berlin, Institute for Biology-Microbiology, Königin-Luise-Strasse 12-16, D-14195 Berlin, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Freie Universität Berlin, Institute for Biology-Microbiology, Königin-Luise-Strasse 12-16, D-14195 Berlin</wicri:regionArea>
<placeName>
<region type="land" nuts="3">Berlin</region>
<settlement type="city">Berlin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Pietrzyk Brzezinska, Agnieszka J" sort="Pietrzyk Brzezinska, Agnieszka J" uniqKey="Pietrzyk Brzezinska A" first="Agnieszka J" last="Pietrzyk-Brzezinska">Agnieszka J. Pietrzyk-Brzezinska</name>
<affiliation wicri:level="1">
<nlm:affiliation>Freie Universität Berlin, Laboratory of Structural Biochemistry, D-14195 Berlin, Germany; Institute of Technical Biochemistry, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Lodz 90-924, Poland.</nlm:affiliation>
<country xml:lang="fr">Pologne</country>
<wicri:regionArea>Freie Universität Berlin, Laboratory of Structural Biochemistry, D-14195 Berlin, Germany; Institute of Technical Biochemistry, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Lodz 90-924</wicri:regionArea>
<wicri:noRegion>Lodz 90-924</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Antelmann, Haike" sort="Antelmann, Haike" uniqKey="Antelmann H" first="Haike" last="Antelmann">Haike Antelmann</name>
<affiliation wicri:level="3">
<nlm:affiliation>Freie Universität Berlin, Institute for Biology-Microbiology, Königin-Luise-Strasse 12-16, D-14195 Berlin, Germany. Electronic address: haike.antelmann@fu-berlin.de.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Freie Universität Berlin, Institute for Biology-Microbiology, Königin-Luise-Strasse 12-16, D-14195 Berlin</wicri:regionArea>
<placeName>
<region type="land" nuts="3">Berlin</region>
<settlement type="city">Berlin</settlement>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Redox biology</title>
<idno type="eISSN">2213-2317</idno>
<imprint>
<date when="2019" type="published">2019</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animals (MeSH)</term>
<term>Cysteine (analogs & derivatives)</term>
<term>Cysteine (biosynthesis)</term>
<term>Cysteine (chemistry)</term>
<term>Cysteine (pharmacology)</term>
<term>Glucosamine (analogs & derivatives)</term>
<term>Glucosamine (biosynthesis)</term>
<term>Glucosamine (chemistry)</term>
<term>Glucosamine (pharmacology)</term>
<term>Glycopeptides (biosynthesis)</term>
<term>Glycopeptides (chemistry)</term>
<term>Glycopeptides (pharmacology)</term>
<term>Gram-Positive Bacteria (drug effects)</term>
<term>Gram-Positive Bacteria (genetics)</term>
<term>Gram-Positive Bacteria (metabolism)</term>
<term>Humans (MeSH)</term>
<term>Inositol (biosynthesis)</term>
<term>Inositol (chemistry)</term>
<term>Inositol (pharmacology)</term>
<term>Models, Biological (MeSH)</term>
<term>Oxidation-Reduction (drug effects)</term>
<term>Protein Processing, Post-Translational (drug effects)</term>
<term>Structure-Activity Relationship (MeSH)</term>
<term>Sulfhydryl Compounds (chemistry)</term>
<term>Sulfhydryl Compounds (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Animaux (MeSH)</term>
<term>Bactéries à Gram positif (effets des médicaments et des substances chimiques)</term>
<term>Bactéries à Gram positif (génétique)</term>
<term>Bactéries à Gram positif (métabolisme)</term>
<term>Cystéine (analogues et dérivés)</term>
<term>Cystéine (biosynthèse)</term>
<term>Cystéine (composition chimique)</term>
<term>Cystéine (pharmacologie)</term>
<term>Glucosamine (analogues et dérivés)</term>
<term>Glucosamine (biosynthèse)</term>
<term>Glucosamine (composition chimique)</term>
<term>Glucosamine (pharmacologie)</term>
<term>Glycopeptides (biosynthèse)</term>
<term>Glycopeptides (composition chimique)</term>
<term>Glycopeptides (pharmacologie)</term>
<term>Humains (MeSH)</term>
<term>Inositol (biosynthèse)</term>
<term>Inositol (composition chimique)</term>
<term>Inositol (pharmacologie)</term>
<term>Maturation post-traductionnelle des protéines (effets des médicaments et des substances chimiques)</term>
<term>Modèles biologiques (MeSH)</term>
<term>Oxydoréduction (effets des médicaments et des substances chimiques)</term>
<term>Relation structure-activité (MeSH)</term>
<term>Thiols (composition chimique)</term>
<term>Thiols (métabolisme)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="analogs & derivatives" xml:lang="en">
<term>Cysteine</term>
<term>Glucosamine</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="biosynthesis" xml:lang="en">
<term>Cysteine</term>
<term>Glucosamine</term>
<term>Glycopeptides</term>
<term>Inositol</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Cysteine</term>
<term>Glucosamine</term>
<term>Glycopeptides</term>
<term>Inositol</term>
<term>Sulfhydryl Compounds</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Sulfhydryl Compounds</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Cysteine</term>
<term>Glucosamine</term>
<term>Glycopeptides</term>
<term>Inositol</term>
</keywords>
<keywords scheme="MESH" qualifier="analogues et dérivés" xml:lang="fr">
<term>Cystéine</term>
<term>Glucosamine</term>
</keywords>
<keywords scheme="MESH" qualifier="biosynthèse" xml:lang="fr">
<term>Cystéine</term>
<term>Glucosamine</term>
<term>Glycopeptides</term>
<term>Inositol</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>Cystéine</term>
<term>Glucosamine</term>
<term>Glycopeptides</term>
<term>Inositol</term>
<term>Thiols</term>
</keywords>
<keywords scheme="MESH" qualifier="drug effects" xml:lang="en">
<term>Gram-Positive Bacteria</term>
<term>Oxidation-Reduction</term>
<term>Protein Processing, Post-Translational</term>
</keywords>
<keywords scheme="MESH" qualifier="effets des médicaments et des substances chimiques" xml:lang="fr">
<term>Bactéries à Gram positif</term>
<term>Maturation post-traductionnelle des protéines</term>
<term>Oxydoréduction</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Gram-Positive Bacteria</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Bactéries à Gram positif</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Gram-Positive Bacteria</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Bactéries à Gram positif</term>
<term>Thiols</term>
</keywords>
<keywords scheme="MESH" qualifier="pharmacologie" xml:lang="fr">
<term>Cystéine</term>
<term>Glucosamine</term>
<term>Glycopeptides</term>
<term>Inositol</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Humans</term>
<term>Models, Biological</term>
<term>Structure-Activity Relationship</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Animaux</term>
<term>Humains</term>
<term>Modèles biologiques</term>
<term>Relation structure-activité</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Low molecular weight (LMW) thiols play an important role as thiol-cofactors for many enzymes and are crucial to maintain the reduced state of the cytoplasm. Most Gram-negative bacteria utilize glutathione (GSH) as major LMW thiol. However, in Gram-positive Actinomycetes and Firmicutes alternative LMW thiols, such as mycothiol (MSH) and bacillithiol (BSH) play related roles as GSH surrogates, respectively. Under conditions of hypochlorite stress, MSH and BSH are known to form mixed disulfides with protein thiols, termed as S-mycothiolation or S-bacillithiolation that function in thiol-protection and redox regulation. Protein S-thiolations are widespread redox-modifications discovered in different Gram-positive bacteria, such as Bacillus and Staphylococcus species, Mycobacterium smegmatis, Corynebacterium glutamicum and Corynebacterium diphtheriae. S-thiolated proteins are mainly involved in cellular metabolism, protein translation, redox regulation and antioxidant functions with some conserved targets across bacteria. The reduction of protein S-mycothiolations and S-bacillithiolations requires glutaredoxin-related mycoredoxin and bacilliredoxin pathways to regenerate protein functions. In this review, we present an overview of the functions of mycothiol and bacillithiol and their physiological roles in protein S-bacillithiolations and S-mycothiolations in Gram-positive bacteria. Significant progress has been made to characterize the role of protein S-thiolation in redox-regulation and thiol protection of main metabolic and antioxidant enzymes. However, the physiological roles of the pathways for regeneration are only beginning to emerge as well as their interactions with other cellular redox systems. Future studies should be also directed to explore the roles of protein S-thiolations and their redox pathways in pathogenic bacteria under infection conditions to discover new drug targets and treatment options against multiple antibiotic resistant bacteria.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">30308476</PMID>
<DateCompleted>
<Year>2019</Year>
<Month>04</Month>
<Day>01</Day>
</DateCompleted>
<DateRevised>
<Year>2019</Year>
<Month>04</Month>
<Day>01</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">2213-2317</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>20</Volume>
<PubDate>
<Year>2019</Year>
<Month>01</Month>
</PubDate>
</JournalIssue>
<Title>Redox biology</Title>
<ISOAbbreviation>Redox Biol</ISOAbbreviation>
</Journal>
<ArticleTitle>Redox regulation by reversible protein S-thiolation in Gram-positive bacteria.</ArticleTitle>
<Pagination>
<MedlinePgn>130-145</MedlinePgn>
</Pagination>
<ELocationID EIdType="pii" ValidYN="Y">S2213-2317(18)30583-4</ELocationID>
<ELocationID EIdType="doi" ValidYN="Y">10.1016/j.redox.2018.08.017</ELocationID>
<Abstract>
<AbstractText>Low molecular weight (LMW) thiols play an important role as thiol-cofactors for many enzymes and are crucial to maintain the reduced state of the cytoplasm. Most Gram-negative bacteria utilize glutathione (GSH) as major LMW thiol. However, in Gram-positive Actinomycetes and Firmicutes alternative LMW thiols, such as mycothiol (MSH) and bacillithiol (BSH) play related roles as GSH surrogates, respectively. Under conditions of hypochlorite stress, MSH and BSH are known to form mixed disulfides with protein thiols, termed as S-mycothiolation or S-bacillithiolation that function in thiol-protection and redox regulation. Protein S-thiolations are widespread redox-modifications discovered in different Gram-positive bacteria, such as Bacillus and Staphylococcus species, Mycobacterium smegmatis, Corynebacterium glutamicum and Corynebacterium diphtheriae. S-thiolated proteins are mainly involved in cellular metabolism, protein translation, redox regulation and antioxidant functions with some conserved targets across bacteria. The reduction of protein S-mycothiolations and S-bacillithiolations requires glutaredoxin-related mycoredoxin and bacilliredoxin pathways to regenerate protein functions. In this review, we present an overview of the functions of mycothiol and bacillithiol and their physiological roles in protein S-bacillithiolations and S-mycothiolations in Gram-positive bacteria. Significant progress has been made to characterize the role of protein S-thiolation in redox-regulation and thiol protection of main metabolic and antioxidant enzymes. However, the physiological roles of the pathways for regeneration are only beginning to emerge as well as their interactions with other cellular redox systems. Future studies should be also directed to explore the roles of protein S-thiolations and their redox pathways in pathogenic bacteria under infection conditions to discover new drug targets and treatment options against multiple antibiotic resistant bacteria.</AbstractText>
<CopyrightInformation>Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Imber</LastName>
<ForeName>Marcel</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Freie Universität Berlin, Institute for Biology-Microbiology, Königin-Luise-Strasse 12-16, D-14195 Berlin, Germany.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Pietrzyk-Brzezinska</LastName>
<ForeName>Agnieszka J</ForeName>
<Initials>AJ</Initials>
<AffiliationInfo>
<Affiliation>Freie Universität Berlin, Laboratory of Structural Biochemistry, D-14195 Berlin, Germany; Institute of Technical Biochemistry, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Lodz 90-924, Poland.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Antelmann</LastName>
<ForeName>Haike</ForeName>
<Initials>H</Initials>
<AffiliationInfo>
<Affiliation>Freie Universität Berlin, Institute for Biology-Microbiology, Königin-Luise-Strasse 12-16, D-14195 Berlin, Germany. Electronic address: haike.antelmann@fu-berlin.de.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
<PublicationType UI="D016454">Review</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2018</Year>
<Month>08</Month>
<Day>24</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Netherlands</Country>
<MedlineTA>Redox Biol</MedlineTA>
<NlmUniqueID>101605639</NlmUniqueID>
<ISSNLinking>2213-2317</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D006020">Glycopeptides</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D013438">Sulfhydryl Compounds</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C543521">bacillithiol</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C089265">mycothiol</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>4L6452S749</RegistryNumber>
<NameOfSubstance UI="D007294">Inositol</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>K848JZ4886</RegistryNumber>
<NameOfSubstance UI="D003545">Cysteine</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>N08U5BOQ1K</RegistryNumber>
<NameOfSubstance UI="D005944">Glucosamine</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003545" MajorTopicYN="N">Cysteine</DescriptorName>
<QualifierName UI="Q000031" MajorTopicYN="N">analogs & derivatives</QualifierName>
<QualifierName UI="Q000096" MajorTopicYN="N">biosynthesis</QualifierName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005944" MajorTopicYN="N">Glucosamine</DescriptorName>
<QualifierName UI="Q000031" MajorTopicYN="N">analogs & derivatives</QualifierName>
<QualifierName UI="Q000096" MajorTopicYN="N">biosynthesis</QualifierName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006020" MajorTopicYN="N">Glycopeptides</DescriptorName>
<QualifierName UI="Q000096" MajorTopicYN="N">biosynthesis</QualifierName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006094" MajorTopicYN="N">Gram-Positive Bacteria</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007294" MajorTopicYN="N">Inositol</DescriptorName>
<QualifierName UI="Q000096" MajorTopicYN="N">biosynthesis</QualifierName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008954" MajorTopicYN="N">Models, Biological</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010084" MajorTopicYN="Y">Oxidation-Reduction</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011499" MajorTopicYN="Y">Protein Processing, Post-Translational</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013329" MajorTopicYN="N">Structure-Activity Relationship</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013438" MajorTopicYN="N">Sulfhydryl Compounds</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="Y">Bacillithiol</Keyword>
<Keyword MajorTopicYN="Y">Gram-positive bacteria</Keyword>
<Keyword MajorTopicYN="Y">Mycothiol</Keyword>
<Keyword MajorTopicYN="Y">Protein S-thiolation</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2018</Year>
<Month>07</Month>
<Day>06</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2018</Year>
<Month>08</Month>
<Day>09</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2018</Year>
<Month>08</Month>
<Day>23</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2018</Year>
<Month>10</Month>
<Day>12</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2019</Year>
<Month>4</Month>
<Day>2</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2018</Year>
<Month>10</Month>
<Day>12</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">30308476</ArticleId>
<ArticleId IdType="pii">S2213-2317(18)30583-4</ArticleId>
<ArticleId IdType="doi">10.1016/j.redox.2018.08.017</ArticleId>
<ArticleId IdType="pmc">PMC6178380</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Acta Crystallogr D Biol Crystallogr. 2015 May;71(Pt 5):1159-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25945581</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>mSphere. 2017 Jun 21;2(3):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28656172</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2015 Jun;96(6):1176-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25766783</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Infect Immun. 2014 Jan;82(1):316-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24166956</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2015 Dec;98(6):1089-100</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26303953</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2014 Nov;94(4):756-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25213752</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2011 Sep 30;412(4):688-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21840320</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2014 Jan 30;10(1):e1003902</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24497832</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiol Mol Biol Rev. 2008 Sep;72(3):471-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18772286</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Rep. 2017 Apr 26;7(1):1195</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28446771</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2009 May 29;284(22):15107-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19286650</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Commun. 2015 Jan 07;6:5935</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25565451</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Free Radic Biol Med. 2016 Aug;97:588-601</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27417938</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 2012 Nov;194(22):6248-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22984260</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Rep. 2017 Jul 10;7(1):5020</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28694441</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chembiochem. 2013 Nov 4;14(16):2160-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24115506</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2014 Aug;1844(8):1367-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24418392</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2009 Aug 28;284(35):23517-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19586910</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2015 Apr;81(8):2781-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25681179</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Chem Biol. 2015 Feb;11(2):156-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25580853</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Gen Appl Microbiol. 2016 Jul 14;62(3):144-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27250661</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol. 2007 Dec 21;6(4):10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18154684</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antimicrob Agents Chemother. 2006 Aug;50(8):2640-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16870753</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2007 May 22;104(21):8743-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17502599</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiologyopen. 2015 Aug;4(4):616-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25988368</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chembiochem. 2016 Sep 15;17(18):1689-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27332744</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta Gen Subj. 2017 Sep;1861(9):2354-2366</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28499823</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2015 May 1;290(18):11365-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25752606</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Med Microbiol. 2013 Apr;303(3):114-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23517692</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>ACS Infect Dis. 2017 Oct 13;3(10):744-755</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28850209</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2018 Feb 20;28(6):410-430</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27967218</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2012 Nov;86(4):787-804</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22970802</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1997 Dec 5;272(49):30780-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9388218</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Struct Biol. 2015 Feb;189(2):81-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25576794</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 2001 Oct;183(19):5617-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11544224</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2013 Apr 10;18(11):1273-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22938038</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phys Chem Chem Phys. 2013 Mar 21;15(11):3772-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23389436</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2009 May;11(5):997-1014</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18999917</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chem Commun (Camb). 2018 Jun 8;54(47):5992-5995</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29790499</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2006 Apr 21;281(16):10778-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16481315</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 2013 Apr 1;451(1):69-79</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23256780</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2010 Apr 6;107(14):6482-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20308541</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>ACS Infect Dis. 2016 Sep 9;2(9):592-607</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27759382</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 1999 Jul 23;455(3):247-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10437782</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2014 Feb;91(4):706-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24330391</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2010 Sep 3;401(5):949-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20620151</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2015 Feb 5;518(7537):115-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25607359</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Microbiol. 2001;55:21-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11544348</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2006 Jan;59(2):475-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16390443</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2005 Oct;58(2):409-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16194229</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Chem Biol. 2009 Sep;5(9):625-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19578333</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2012 Aug 7;51(31):6148-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22788966</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2011 Dec 13;50(49):10751-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22059487</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2015 Oct;98(2):218-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26135358</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2014 Feb 21;289(8):5228-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24379404</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>ACS Infect Dis. 2018 May 11;4(5):771-787</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29465985</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 2015 Jul 1;469(1):45-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25891483</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chem Biol Interact. 2011 May 30;191(1-3):137-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21195066</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2009 Sep 15;48(36):8664-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19653655</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 2013 Jun 28;436(2):128-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23618856</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biomolecules. 2014 May 16;4(2):527-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24970229</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 1967 Sep;33(1):155-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">4227577</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Redox Biol. 2018 May;15:557-568</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29433022</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biol Chem. 2015 May;396(5):415-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25720121</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acc Chem Res. 2018 Jun 19;51(6):1496-1506</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29792672</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Metallomics. 2016 Jul 13;8(7):709-19</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27197762</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2018 Feb 20;28(6):487-504</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28372502</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Gen Appl Microbiol. 2017 Nov 17;63(5):280-286</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28904252</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2014 Feb 1;20(4):589-605</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23886307</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 2003 Sep 1;374(Pt 2):513-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12755685</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1996 Apr;178(7):1990-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8606174</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2018 Feb 20;28(6):445-462</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28301954</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biol Chem. 2015 May;396(5):523-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25581756</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2011 Jul 1;15(1):123-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20712413</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2014 Jul 20;21(3):357-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24313874</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2017 Aug 11;292(32):13097-13110</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28620052</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol. 2002;3(5):research0025</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12049666</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Microbiol. 2015 Mar 16;6:187</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25852656</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Proteomics. 2011 Nov;10(11):M111.009506</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21749987</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2003 Mar;47(6):1723-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12622824</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2013 May;1830(5):3182-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23075826</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Med Microbiol. 2013 Aug;303(6-7):324-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23517691</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2014 Feb 4;53(4):755-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24447055</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Med. 2005 Jun;11(6):638-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15895072</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Prod Rep. 2008 Dec;25(6):1091-117</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19030604</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2009 Jan;71(1):198-211</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19007410</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chem Rev. 2009 Jul;109(7):2903-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19480389</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiology. 2007 Jul;153(Pt 7):2212-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17600065</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2013 May 1;18(13):1642-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23075082</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Genet. 2016 Feb;62(1):59-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26259870</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2000 Sep 5;39(35):10739-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10978158</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1998 Mar 6;273(10):5752-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9488708</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 2003 Nov;185(22):6736-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14594852</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Allemagne</li>
<li>Pologne</li>
</country>
<region>
<li>Berlin</li>
</region>
<settlement>
<li>Berlin</li>
</settlement>
</list>
<tree>
<country name="Allemagne">
<region name="Berlin">
<name sortKey="Imber, Marcel" sort="Imber, Marcel" uniqKey="Imber M" first="Marcel" last="Imber">Marcel Imber</name>
</region>
<name sortKey="Antelmann, Haike" sort="Antelmann, Haike" uniqKey="Antelmann H" first="Haike" last="Antelmann">Haike Antelmann</name>
</country>
<country name="Pologne">
<noRegion>
<name sortKey="Pietrzyk Brzezinska, Agnieszka J" sort="Pietrzyk Brzezinska, Agnieszka J" uniqKey="Pietrzyk Brzezinska A" first="Agnieszka J" last="Pietrzyk-Brzezinska">Agnieszka J. Pietrzyk-Brzezinska</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/GlutaredoxinV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000127 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000127 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    GlutaredoxinV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:30308476
   |texte=   Redox regulation by reversible protein S-thiolation in Gram-positive bacteria.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:30308476" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a GlutaredoxinV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:13:42 2020. Site generation: Wed Nov 18 15:16:12 2020